A Comparison of Modeling Approaches for Estimating Within-flock Disease Transmission Parameters for the 2015 H5N2 HPAI Virus Outbreak in the U.S.

Amos Ssematimba, Sasidhar Malladi, Thomas J. Hagenaars, Todd J. Weaver, Peter Bonney, Kelly A. Patyk, David A. Halvorson, Carol J. Cardona

2016 AAVLD/USAHA Annual Meeting, Greensboro, NC
October 15, 2016
• Outbreak affected 104 commercial turkey operations in Minnesota

• Estimated total impact on U.S. economy was ~USD 3.3 billion (Greene J.L. (2015), Congressional Research Service)

Impact of Transmission Parameters on Disease Dynamics

• Within-flock transmission dynamics inform disease control measures

• β: adequate contact rate or transmission parameter = mean number of birds infected by each infectious bird per unit time: determines disease spread rate

• R_0: basic reproduction number = $\beta \times$ infectious period
Modeling Approaches

• Back-calculation using mortality data from outbreak

• Forward simulation and curve-fitting using mortality data from outbreak
Why Estimate β and R_0?

• Within-flock β and R_0 inform
 • Secure poultry supply risk assessments
 • Evaluation of active and passive surveillance protocols
 • Between-premises disease spread models

• Thus far β estimates from U.S outbreak data were unavailable, and estimates from other countries were used

• Although β has been previously estimated from experimental data, extrapolation to commercial flocks is not straight forward
Back-calculation: Data Preparation

• Ideally, estimation of β requires data on number of newly infected birds (C), Susceptible (S), Infectious (I), and total number of birds (N) at different time points—yet only mortality is observed in the field.

• Through back-calculation, we estimate these 4 variables from mortality data assuming fixed latent and infectious periods.

• Once C, S, I & N are obtained, β is estimated using accepted GLM-based approaches.
Back-calculation: Parameters Used

• Default scenario: 1 day latent and 4 days infectious period based on inoculation studies using EA/AM HPAI H5N2 virus turkey field isolate was used

• For purposes of sensitivity analysis, the latent period was adjusted to 2 days in the back-calculation procedure

• For validating the estimation procedure, synthetic simulated mortality data with a known β was used
Back-calculation: Results

Estimated β using infectious period of 4 days with latent period of 1 day for default scenario and 2 days for sensitivity analysis as well as β from validation with synthetic data (input 2.87)

<table>
<thead>
<tr>
<th></th>
<th>β (95% CI)</th>
<th>R_0 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbreak data: Default scenario</td>
<td>2.87 (2.19 – 3.76)</td>
<td>11.49 (8.77 – 15.04)</td>
</tr>
<tr>
<td>Outbreak data: Sensitivity analysis</td>
<td>9.38 (5.13 – 17.14)</td>
<td>37.52 (20.52 – 68.56)</td>
</tr>
<tr>
<td>Validation on synthetic data</td>
<td>2.43 (1.52 – 4.31)</td>
<td>9.72 (6.08 – 17.24)</td>
</tr>
</tbody>
</table>
Possible Limitations for Back-calculation

• Back-calculation with GLM-based estimation studies are limited by
 • the assumption of deterministic latent and infectious periods
 • ignoring between-bird variation
 • using whole-integers for these durations e.g., not considering the exact moment of infection

• Alternative approaches are being explored e.g., forward simulation and curve-fitting
Simulation and Curve-fitting: Methods

- A new approach is proposed based on least squares curve-fitting.
- Disease mortality is predicted using deterministic differential equation models.
- A goodness of fit measure (approximate likelihood) is then maximized to estimate β.

Mortality data in a EA/AM HPAI H5N2 Infected Turkey House and Predicted Mortality with Best Fit β.

![Graph showing mortality data and simulated mortality with $\beta = 2.4$.]
Simulation and Curve-fitting: Results

• Performed well for estimating β on synthetic datasets

• Uses smaller time steps and non-integer latent and infectious periods

• The β estimate was sensitive to the mean latent period

Approximate likelihoods for β from 5 HPAI infected turkey flocks
Comparison in Five Selected Flocks

- For comparison purposes, 5 flocks were selected, individual-flock β’s and combined-flocks β were estimated.
- The combined β estimate and those for flocks # 1, 2, and 3 are in close agreement.
- Forward simulation approach also considers uncertainty in the time of flock infection and hence has greater uncertainty in β estimate.

<table>
<thead>
<tr>
<th>Flock</th>
<th>β (90%CI): FIVE flocks in outbreak data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Back – calculation</td>
</tr>
<tr>
<td>Flock1</td>
<td>4.16</td>
</tr>
<tr>
<td>Flock2</td>
<td>2.25</td>
</tr>
<tr>
<td>Flock3</td>
<td>1.42</td>
</tr>
<tr>
<td>Flock4</td>
<td>2.13</td>
</tr>
<tr>
<td>Flock5</td>
<td>10</td>
</tr>
<tr>
<td>5 flocks combined</td>
<td>2.8 (2.1 – 3.7)</td>
</tr>
</tbody>
</table>
Concluding Remarks

• Back-calculation is a computationally fast method that uses accepted GLM-based procedures to obtain reasonable estimates for β

• β is a key parameter in a number of modeling analyses for decision support and active surveillance

• Developing multiple methods to estimate β will improve the accuracy of within-flock HPAI spread models results